Х

noc17-me13@nptel.iitm.ac.in 🔻

Courses » Fundamentals of Acoustics

Unit 2 - W Introduct	Announcements Course Forum Progress Mentor	
Course outline	Week 1 Assignment 🖍	
How to access the portal?	The due date for submitting this assignment has passed. Due on 2017-02-07, 23:59 IST Submitted assignment	
Week 01: Introduction and Terminology	 1) Which of the following option characterizes a transverse wave? 1 pol Particle displacement is perpendicular to the direction of wave propagation. Particle displacement is parallel to the direction of wave propagation. Particle displacement is in random direction to the wave propagation. None of the options are correct 	int
 Lesson 1: Course Overview Lesson 2: 	2)Let u be the velocity of particle in a media and c be the velocity of wave 1 po propagation. Out of the following options choose the correct statement regarding wave propagation	int
Introduction Lesson 3: Nature Of Sound 	 values of u and c are always equal. values of u and c can be different. values of u and c are always different. 	
Lesson 4: The Decibel Scale	None of the options are correct. 3) In air, sound travels as	int
 Lesson 5: Key Terms in Acoustics 	 Longitudinal wave. Transverse wave. Rayleigh wave 	
 Lesson 6: Adding Decibels 	 4)Beats phenomena occur due to between two sound waves whose 1 point 	int
O Quiz : Week 1 Assignment	frequencies are close to each other.	
 Week 1 Assignment 	 Retraction Interference 	

5/15/2017

2017	Fundamentals of Acoustics Unit 2 - Week 01: Introduction and Terminology	
Solution	Reflection	
Week 02: Concept Review	5)What is the auditory threshold pressure at 1 KHz? \bigcirc 2 μPa (RMS)	1 point
Week 03: Wave equation	 20 Mpa (peak to peak) 20 µPa (peak to peak) 20 µPa (RMS) 	
Week 04: Transmission line equations Week 05: 1-D Waves Week 06: Power and spherical wayes	 6) Which physical quantity is used to characterize sound pressure level in dB? Amplitude of pressure fluctuations produced due to pressure wave. Amplitude of absolute pressure produced due to pressure wave. RMS value of pressure fluctuations produced due to pressure wave. RMS value of absolute pressure produced due to pressure wave. 7) Define sound intensity. Sound intensity is the sound pressure per unit area. Sound intensity is the sound velocity per unit area. 	1 point 1 point
Week 07: Spherical waves and interference Week 08: Directivity	Sound intensity is the sound power per unit area. 8)What is the value of reference pressure used to find sound pressure level in air? $2 * 10^{-5} Pa$	1 point
Week 09: Sound in rooms Week 10: Reverb time and FFT Week 11: Weighting and loudness	$2 * 10^{-6} Pa$ $2 * 10^{5} Pa$ $2 * 10^{6} Pa$ 9)Sound power is proportional to sound pressure	1 point
Week 12: Miscellaneous topics and closure	$(\text{sound pressure})^2 $ (sound pressure) ^{1/2} (sound pressure) ⁻²	
	10)Which of the following options represent an octave? 50 to 100 Hz 50 to 500 Hz	1 point

Fundamentals of Acoustics - - Unit 2 - Week 01: Introduction and Terminology

- 50 to 400 Hz
- 50 to 58 Hz

11) What is the expression for wave number (k)?

 $k = \frac{\text{frequency in } \frac{rad}{s}}{\text{wave velocity}}$ $k = \frac{\text{frequency in Hz}}{\text{wave velocity}}$ $k = \frac{\text{wave velocity}}{\text{frequency in } \frac{rad}{s}}$ $k = \frac{\text{wave velocity}}{\text{frequency in Hz}}$

12Which of the following option characterizes pink noise?

1 point

1 point

- Equal power with in a fixed bandwidth for any center frequency.
- Constant power spectral density.
- Power spectral density is inversely proportional to frequency.
- None of the options are correct.

13¢onsider two sound sources working in a room. Which of the following option **1** *point* represents right way to find out total dB level inside the room?

Directly add up individual sound pressure level in dB.

Add up sound power produced by each source and then find the dB value corresponding to total power.

Add up sound pressure produced by each source and then find the dB value corresponding to total pressure.

All the options are correct.

1420 dB increase in sound pressure level corresponding to _____ increase in **1** point power.

initial power in Watts×100 *times*

initial power in Watts×20 times

initial power in Watts+20 times

initial power in Watts+200 *times*

15\$Sound pressure level heard by a listener when there is a wall present **1** point between a source and the listener is 76 dB. If the wall attenuates sound by 70 dB, what is the actual sound level produced by the source?

- 77 dB.
- 6 dB.
- 146 dB.
- 76 dB.

16Out of the following options, when can we directly add amplitudes of individual **1** *point* signals to get the total amplitude of the signal?

Fundamentals of Acoustics - - Unit 2 - Week 01: Introduction and Terminology

- When the signals are co-related signals.
- When the signals are non co-related signals.
- When the signals are co-related or non co-related.
- All the options are correct.

Previous Page

Powered by

